Computational protein design with backbone plasticity
نویسندگان
چکیده
منابع مشابه
Computational protein design with backbone plasticity
The computational algorithms used in the design of artificial proteins have become increasingly sophisticated in recent years, producing a series of remarkable successes. The most dramatic of these is the de novo design of artificial enzymes. The majority of these designs have reused naturally occurring protein structures as 'scaffolds' onto which novel functionality can be grafted without havi...
متن کاملHigh-resolution protein design with backbone freedom.
Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhe...
متن کاملDe novo backbone scaffolds for protein design
In recent years, there have been significant advances in the field of computational protein design including the successful computational design of enzymes based on backbone scaffolds from experimentally solved structures. It is likely that large-scale sampling of protein backbone conformations will become necessary as further progress is made on more complicated systems. Removing the constrain...
متن کاملHarbury High - Resolution Protein Design with Backbone Freedom
, 1462 (1998); 282 Science et al. Pehr B. Harbury High-Resolution Protein Design with Backbone Freedom This copy is for your personal, non-commercial use only. clicking here. colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to others here. following the guidelines can be obtained by Permission to republish or repurpose art...
متن کاملData driven flexible backbone protein design
Protein design remains an important problem in computational structural biology. Current computational protein design methods largely use physics-based methods, which make use of information from a single protein structure. This is despite the fact that multiple structures of many protein folds are now readily available in the PDB. While ensemble protein design methods can use multiple protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemical Society Transactions
سال: 2016
ISSN: 0300-5127,1470-8752
DOI: 10.1042/bst20160155